Recognition and Classification of Emotions in Music

Aditya Nigam (11040) and Revant Teotia (13564)

Group - 2

Mentor: Dr. Piyush Rai

Department of Computer Science and Engineering, IIT Kanpur

Introduction:

- Music is an integral part of human life. Often, music is associated with important moments of our life, brings to us memories and evokes emotions.
- Due to frantic increase in the amount of music available these days, classification and recognition of emotions conveyed by music has become indispensable in todays world.
- No classification algorithm has been able to generate great accuracy on these dataset.
- We have attempted to perform a comparative study of the different classifiers and their ability to predict different genres with varied accuracy.

Dataset:

- ✓ Dataset has been prepared from All Music.com dataset, which consists of 903 audio clips of 30 seconds each.
- Dataset has been taken from http://mir.dei.uc.pt/resources/MIREX-like_mood.zip made available by Renato Panda, Bruno Rocha and Rui Pedro Paiva.
- ✓ The dataset is in accordance with the MIREX dataset which is the base of comparison generally accepted by the music emotion recognition community.

Genre Clusters:

Cluster 1	 passionate, rousing, confident, boisterous, rowdy
Cluster 2	 rollicking, cheerful, fun, sweet, amiable/good natured
Cluster 3	literate, poignant, wistful, bittersweet, autumnal, brooding
Cluster 4	humorous, silly, campy, quirky, whimsical, witty, wry
Cluster 5	aggressive, fiery, tense/anxious, intense, volatile, visceral

Features extracted:

- o **RMS:** Root mean Square approximates the loudness of the sound. It is calculated by taking RMS of the amplitudes of the spectrum of sound.
- Mel-Frequency Cepstral Coefficients: MFCC represents a set of short term power spectrum characteristics of the sound. It models the characteristics of human voice. It can be derived as follows:
- ✓ Take the Fourier transform of (a windowed excerpt of) a signal.
- ✓ Map the powers of the spectrum obtained above onto the mel scale, using triangular
- ✓ overlapping windows.
- ✓ Take the logs of the powers at each of the mel frequencies.
- ✓ Take the discrete cosine transform of the list of mel log powers, as if it were a signal.
- ✓ The MFCCs are the amplitudes of the resulting spectrum.
- o **Spectral Flux:** Spectral flux is a measure of how quickly the power spectrum of a signal is changing, calculated by comparing the power spectrum for one frame against the power spectrum from the previous frame.
- ✓ It is usually calculated as the Euclidean distance between the two normalised spectra. The spectral flux is not dependent upon overall power and phase.
- Spectral Mean: This is average of all the frequencies in a spectrum. Unlike centroid it is not calculated by assigning weights to the frequencies

• **Spectral Centroid**: The spectral centroid is a measure used in digital signal processing to characterise a spectrum. It indicates where the 'center of mass' of the spectrum is. It is calculated as:

Centroid =
$$\frac{\sum_{n=0}^{N-1} f(n)x(n)}{\sum_{n=0}^{N-1} x(n)}$$

- \checkmark where x(n) represents the weighted frequency value, or magnitude, of bin number n, and f(n) represents the center frequency of that bin.
- o **Zero Crossing Rate:** Zero Crossing Rate is the zero crossing count (ZCC) in which it counts the number of times the sign changes from positive to negative or vice versa per second in a signal.
- o **Rolloff:** Spectral Rollo point is the frequency below which the 85 % of the magnitude of the distribution is concentrated. The equation to calculate rolloff is:

$$\sum_{n=1}^{M} |x[n]| = 0.85 \sum_{n=1}^{N/2} |x[n]|$$

- O **Skewness:** From skewness we can know, how much the shape of the spectrum below the Spectral Centroid is different from the shape above. For a white noise, the skewness is zero.
- O Variance: It is variance of frequencies from the spectral centroid. Variance gives us a measure for how much the frequencies deviate from the Spectral Centroid in a spectrum.
- o **Flatness:** Spectral Flatness measures the atness of a spectrum. It is also used to distinguish between noise-like and tone-like sounds and calculated using the equation:

$$Flatness = \frac{\sqrt[N]{\prod_{n=0}^{N-1} x(n)}}{\frac{\sum_{n=0}^{N-1} x(n)}{N}} = \frac{exp(\frac{1}{N} \sum_{n=0}^{N-1} lnx(n))}{\frac{1}{N} \sum_{n=0}^{N-1} x(n)}$$

Spectral Crest Factor: Spectral Crest factor is the ratio of the maximum spectrum power and the mean spectrum power of a sub-band. It measures the peakness of a spectrum. It is used to distinguish between noise-like and tone-like sounds.

Results:

➤ Confusion matrix before and after merging of clusters for SVM Classier:

			Predicted Label					
			C1	C2	C3	C4	C5	
	lec	C1	28.12	6.25	21.87	18.75	25	
True Lab	C2	5.26	21.05	23.68	34.21	15.78		
	C3	0	0	78.37	16.21	5.4		
	C4	12.19	9.75	26.82	36.58	14.63		
	C5	15.62	6.25	9.38	15.62	53.12		

			Predicted Label				
			C1 + C5	C2 + C4	C3		
	Irue	C1 + C5	60.93	23.43	15.62		
		C2 + C4	24.05	50.63	25.32		
	,	C3	5.40	16.22	78.38		

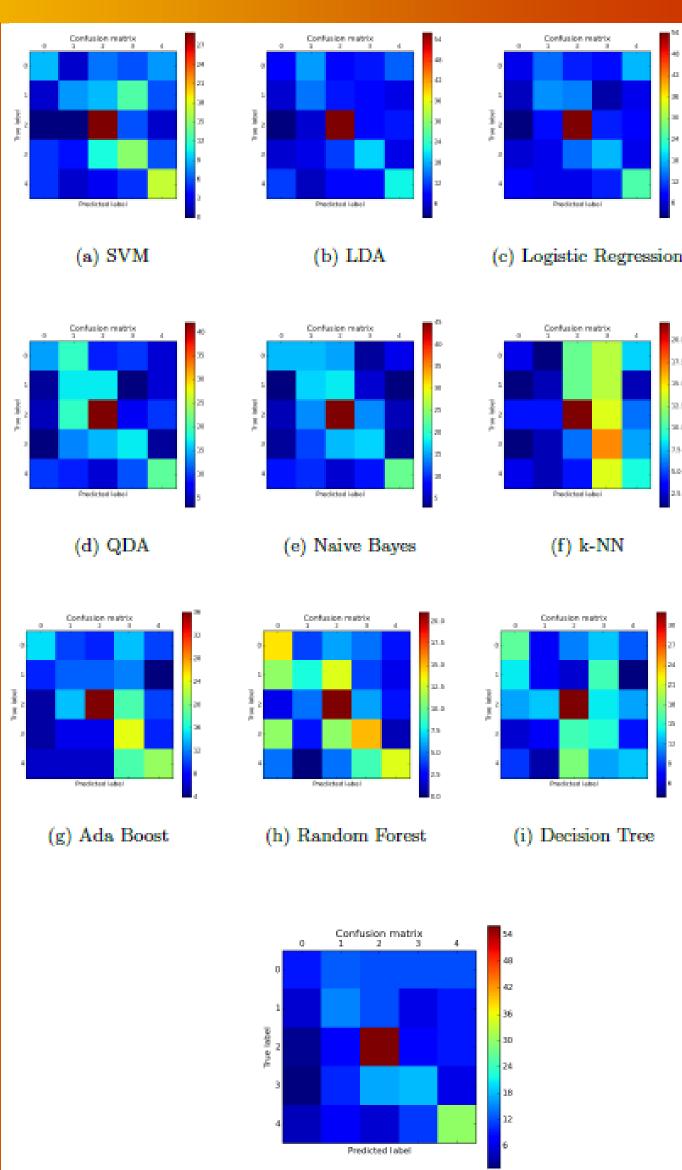
Confusion matrix before and after merging of clusters for Ensemble Classifier:

		Predicted Label				
		C1	C2	C3	C4	C5
el	C1	20.68	27.58	17.24	12.06	22.41
abe	C2	12.7	29.78	23.4	17.02	17.02
e T	C3	2.4	10.84	67.46	8.43	10.84
Cru	C4	3.8	11.53	30.76	38.46	15.38
	C5	19.14	14.89	14.89	25.53	25.53

		Predicted Label				
		C1 + C5	C2 + C4	C3		
<u>e</u>	C1 + C5	43.81	40.95	16.19		
Fu	C2 + C4	25	48	47		
	C3	13.25	19.28	67.47		

> Statistics for different classifiers:

Classifier	Accuracy (w/o PCA)	Accuracy (with PCA)	Precision	Recall	F1-score
SVM (rbf)	37.77%	43.33%	0.52	0.43	0.45
Naive Bayes	36.6%	39.73%	0.41	0.40	0.40
QDA	37.03%	37.37%	0.39	0.37	0.37
LDA	37.7%	41.07%	0.44	0.41	0.42
Ada Boost	30.97%	36.02%	0.37	0.36	0.36
k-NN	33.33%	38.88%	0.41	0.39	0.40
Log-Regression	39.05%	42.42%	0.48	0.42	0.45
Decision tree	27-32%	27-32%	0.28	0.28	0.27
Random Forest	32-38%	32-38%	0.36	0.35	0.35
Ensemble	42.76%	41.41%	0.48	0.43	0.44
				•	



Confusion matrix for Ensemble Classifier

Conclusion:

- The ensemble classier used hard voting technique to classify music clips. We were able to achieve better precision using the ensemble classier.
- ➤ We were also able to establish the fact that increasing the number of features does no necessarily increase linearly the accuracy of prediction results.
- Support Vector Machine with rbf kernel, gamma = 0.01 and C = 10, and Ensemble Classier were the best predictors.
- ➤ Use of PCA with 14 and 22 components respectively, resulted into the mentioned results.
- ➤ According to the researcher Renato Panda, this dataset is might be more difficult than the MIREX dataset.
- Further improvements in the results could have been improved by using better methods of splitting into training and test datasets and using ReliefF feature selection technique.

References:

- ❖ Renato Panda and Rui Pedro Paiva. Music emotion classication: Dataset acquisition and comparative analysis. In 15th International Conference on Digital Audio Eects (DAFx-12). Citeseer, 2012.
- Renato Panda, Bruno Rocha, and Rui Pedro Paiva. Music emotion recognition with standard and melodic audio features. Applied Articial Intelligence, 29(4):313{334, 2015.
- R Shobana. A framework for audio feature extraction from videos for genre identication. 2015.
- * Alicja Wieczorkowska, Piotr Synak, and Zbigniew W Ras. Multi-label classication of emotions in music. In Intelligent Information Processing and Web Mining, pages 307{315. Springer, 2006.